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Water is recognized as a desirable solvent for catalysis1,2 and as
a promising raw material for solar generation of fuels;3 however,
relatively few kinetics and mechanism studies of C1 reduction
reactions4 in aqueous media have been reported. The observation
of Konno et al.5 that high solvent acceptor number6 (AN) enhances
the rate of hydride transfer from Ru(terpy)(bpy)H+ (RuH+, terpy
) 2,2′,6′,2′′-terpyridine; bpy) 2,2′-bipyridine, Chart 1) to carbon
dioxide in organic solvents has led us to characterize this reaction
in water. We find that solvent water (AN) 55) accelerates the
CO2 reaction rate by more than 4 orders of magnitude compared
to acetonitrile (AN) 18.9) and that water also promotes the related
reductions of C1 species carbon monoxide and formaldehyde by
RuH+.

The lowest energy electronic absorption of RuH+, a Ru(II)-to-
terpy charge transfer at 500 nm in water, shifts to shorter wavelength
upon hydride transfer to C1. The kinetics of the hydride-transfer
reactions were followed by UV-vis spectroscopy, with both CO2
and CH2O requiring stopped-flow methods. All exhibited second-
order rate laws,-d[RuH+]/dt ) kA[RuH+][A] M s -1 where A is
the hydride acceptor, CO2 (see Figure 1), CO, or CH2O.7

Product solutions were characterized by electrospray ionization
mass spectrometry (ESI-MS), and assignments were confirmed by
comparison with authentic samples prepared by other methods.7

With CO2 reactant, productm/z ) 536 is assigned to102Ru(terpy)-
(bpy)[OCH(O)]+. For CO, them/z ) 351.6 peak is assigned as

102Ru(terpy)(bpy)(OCH2(OH))[PF6](H3O)2+ (z) 2, m) 703). With
formaldehyde as reactant,m/z ) 522 is102Ru(terpy)(bpy)(OCH3)+.
Scheme 1 summarizes the reaction sequence.

In contrast to previous studies of hydride transfer to free2 or
metal-bound C1 species such as RuII(bpy)2(CO)(C1),8-11 for each
hydride-transfer reaction studied here the initial product impli-
cated is the O-bonded hydride adduct: formate ion RuOCHO+

(2), formaldehyde hydrate RuOCH2(OH)+ (3), or methanol RuOCH3+

(4). This assignment is consistent with the ESI MS, UV-vis
spectrum, comparison with known samples, and the relatively
rapid transformation to Ru-OH2

2+ (λmax 477, pKa 10).12 Results
are summarized in Table 1. The importance of the Lewis acidity
of the anhydride or keto form of the C1 acceptor to its ability to
accept hydride ion is striking. For CO2, a pH-jump experiment13,14

established that reaction of RuH+ with CO2 is >50 times greater
than with HCO3

-. For CO, reaction with its hydrate, formate ion,
is <10-5 M-1 s-1, at least one-million times slower than the
reaction with CO. Similarly for formaldehyde, the minor species
H2CO15,16 was at least 105 times more reactive than its dominant
hydrate form.

We bracket the hydricity17 of this Ru(II) hydride using our kinetic
data. The intercept of the plot ofkobs versus [CO2] is 0.1 s-1, and
the slope is 8.5× 102 M-1 s-1. Then the rate constant for the reverse

Figure 1. The pseudo-first-order rate constant for reaction of Ru(terpy)-
(bpy)H+ with CO2 at pH 5.8 as a function of CO2 concentration. Inset:
Scans taken every 500 ms with 1.5% saturated CO2 (0.45 mM, first point).

Chart 1

Table 1. Rate Constants and Products for the Hydride Transfer to
Acceptor A

A

parameter CO2 CO CH2O

kA, M-1 s-1 a 8.5× 102 0.7 ∼1 × 106

λmax, nmb 490 487 486
m/zproductc 536 (100%) 351.6 (85%) 522 (30%)d

kaq, s-1 0.4× 10-3 e 1.4× 10-4 e 8.8× 10-4 f

a Rate constant for hydride transfer to A (Scheme 1).b Position of lowest
energy MLCT band of hydride adduct of A.c Value in parenthesis is relative
intensity at its maximum (usually first trace).d The product methanol
complex manifested as an intense peak atm/z) 523 only when the collision
energy was reduced to 25%.e Rate of aquation at pH 5.3.f Rate of aquation
in water, no buffer added.

Scheme 1
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reaction ise0.1 s-1, andKA,12 for the hydride transfer (from the
ratio of forward and reverse constants) isg104 M-1 and ∆G0 e
-5 kcal/mol. Since the hydricity of formate in water is 23 kcal/
mol18 (based on pKa(H2) ) 2219 rather than the commonly used,
earlier value 31), the hydricity of Ru(terpy)(bpy)H+ in water ise18
kcal/mol.

As discussed previously5,20 for reaction of CO2 with RuH+ and
Re(bpy)(CO)3H, these reactions involve hydride transfer via transi-
tion states (Scheme 2) for CO2.

The reactions cannot involve Ru binding of O, followed by
transfer of H-, since substitution reactions at the Ru(II) center are
many orders of magnitude too slow21 (for binding of acetonitrile,
k ) 0.3 × 10-4 M-1 s-1)18 to account for the observed rates.

On the basis of the work presented, it is evident that water is an
excellent solvent for the hydride transfer to the free C1 acceptors.
It is of great interest to understand the basis of this reactivity
enhancement, which is much greater than expected from dielectric
continuum considerations.5,20 We compare the effect of solvent
acceptor number on thermodynamic and kinetic parameters in
Figure 2.

Acceptor number reflects the electrophilic properties of the
solvent; with increasing AN, the negative charge on the hydride
ligand is increasingly stabilized. The trend observed here for
∆G0(H-) has also been found for chloride ion.6 The plot in Figure
2 strongly suggests that the thermodynamics of formation of the
hydride ion is responsible for the exceptional solvent sensitivity of
the hydride-transfer rate to solvent acceptor number and encourages
us to explore the scope of this reactivity enhancement in future
experiments with other metal-hydride donors and both metal-bound
and free hydride acceptors.
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Figure 2. Free energies of hydride-ion formation (∆G0(H-)) (circles),19

free energy of activation∆Gq for hydride transfer from RuH+ to CO2

(triangles),5 and (∆G0(CO2)soln), the free-energy of solution5 of CO2

(squares), as a function of solvent acceptor number.6

Scheme 2
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